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Resonant Frequency angFactor of Axisymmetric
Composite Microwave Cavities

Ahmed A. Kishk Fellow, IEEE Darko Kajfez Life Senior Member, IEEEand Siva CheboluMember, IEEE

Abstract—Resonant frequency and unloaded@ factor of 2z
composite microwave cavities are computed using surface integral QE_)
equations for axisymmetric objects. The equivalence principle
is used to formulate the problem so that the unbounded space
Green’s function can be utilized. The numerical results are
verified experimentally for many samples of conducting cavities
and dielectric resonators inside conducting cavities. Also, cases
with a sector of the rotational cavity are considered by introducing
a conducting corner. The method allows the computation of the
stored energy in each dielectric region and the unloaded factor.

Index Terms—Cavity resonators, dielectric resonators, integral
equations,Q factors, resonant frequencies.

. INTRODUCTION Fig. 1. Example of the original cavity.

ERAMIC materials of high dielectric constant and low
loss can exhibit a very higty} factor. Therefore, they have analysis of an open DR. The method was applied to dielectric

been widely used as resonators in microwave filters and dmdies of revolution of arbitrary cross section and is useful for
cillators. To understand the behavior of these elements andatty azimuthal variation. Their results indicate that their method
determine the best coupling mechanism, it is necessary to tias yielded highly accurate values of resonant frequencies and
termine the electromagnetic-field distribution inside the cavity factors for homogeneous DRs. Also, the finite integration
The resonant frequency aidglfactor have to be computed ac-method was used for axisymmetric shielded resonators [15].
curately before the electromagnetic fields in the vicinity of thAnother recently reported approach to the electromagnetic
resonators can be obtained. It is, therefore, important to be atdsonance of open DRs is the null-field method [16], [17]
to determine the resonant frequencies ghthctors of the de- developed by Zheng and Strom. In that approach, the resonance
sired modes. problem is solved by searching for zeros of the determinant of

Many different approaches to the analysis of dielectribie so-calledy-matrix for the DRs.
resonators (DRs) have been described in the literature [1]-[22] A previously developed numerical method [18] based on the
Some of these methods are based on simplifications of thoM is used here to search for the complex resonant frequency,
geometry, such as the perfect magnetic conducting (PMC) wallsm which the resonant frequency and radiatigriactor can
method [1]-[3]. Dielectric waveguide methods [4], as well alse computed, of both homogeneous and inhomogeneous DRs
their perturbation corrections and the variation improvemeritsfree space. The geometries considered here are rotationally
[5], for cylindrical resonators have also been developed. symmetric so the body of revolution approach is employed. The
1975, Van Bladel reported a rigorous asymptotic method fequivalence principle is used and the surface integral equations
evaluating the modes of DRs of arbitrary shape and high peare formulated for the problem. The MoM is then used to reduce
mittivity [6], [7]. In addition, radial and axial mode-matchingthe integral equations to a matrix equation. The natural resonant
methods [9] for shielded resonators, as well as asymptofiequencies are defined as the frequencies at which the determi-
expansion methods [10] have been reported. Also, genemaht of the moment matrix vanishes. Also, since the rotationally
mode-matching approaches using Green’s dyadic functionssymmetric structure supports independent azimuthal modes, the
transverse modes in expanding the interior and exterior fieldgimuthal variation of the unknown equivalent currents is ex-
[11] have been successful approaches for this kind of problepanded in Fourier series. This allows one to search for the zeros
Glissonet al. [12], Kajfez et al. [13], and Kishket al. [14] of the moment matrix for modes having a particular azimuthal
introduced the use of the method of moments (MoM) for theariation.

To compute the? factor of nonradiating cavities, we con-
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Il. EQUIVALENCE PRINCIPLE z z

b 3
The problem is formulated based on the surface equivalen w

principle [18]. To illustrate the procedure, an example of a DF cavity

in a cavity is considered, as shown in Fig. 1, as the origin¢ 4

problem, which consists of two dielectric disks (the puck an IF ;

support) inside a conducting cavity. This problem consists ¢ ~, conductor

4

three regions, namely: 1) the puck region; 2) the support re¢
gion; and 3) the free-space cavity volume. To formulate th il e
problem using the surface equivalence principle, three equi i
alent problems are needed. These equivalent problems are |

sented graphically, as shown in Fig. 2. In summary, each regitcopductor

has an unbounded equivalent problem filled with materials ¢ —i"

the same type as the original material of the region with nonzel “ ")

fields and zero field outside of the particular region. The surfac

surrounding the region carries equivalent electric and magnetic @ (b)

currents to compensate for the discontinuity in the assumed field _ _ _ _ _ o
T . . . Fig. 3. Geometries of the sectorial cavity. (a) Circular sectorial cavity with
distribution. The equivalent currents on the dielectric surfacg%,e(. (b) Circular sectorial cavity witd = 180°.
of each equivalent problem must satisfy the continuity of the
tangential fields. Notice that we only consider the interior con- A
ducting surface of the cauvity. d
Surface integral equations are obtained from the boundary a T
conditions on all boundaries in terms of unknown surface cur- h
rents. The equivalent surface currents for body of revolution can ¢
be expressed as > La L.
' > Ciw
L07) = 30 [t + gito] St (1) 1 G2 G3

M) =m0 > [V,fnat + Vrﬁi%} )™ (2)

™, whereT,, is a square matrix(,, is a column vector for the
nknown coefficients, an¥l,,, is the excitation vector. The so-

:
,

Fig. 4. Cross sections of different configurations of conducting cavities.

where J and M are the equivalent electric and magnetic | ) o
currents, respectively. Surface coordinatesnd ¢ are in- ution of (3) provides the unknown current coefficients on all

troduced on the surface, whetds the arc length along thethe objgct boundanesh. I? gljgneral, the current coefficients can
generating curve ang is the azimuthal angle measured fronpe used to compute the fields as

the z—z-plane. Alsou, anduy are the unit vectors tangential —j 5 .
to the body surface in the directisrand. f(¢) is the triangle “\") = 3~ /S (K20, + (Vs - J)V — jweM, x V]
basis function aneh is the index of the azimuthal mode. More x G(jr—r')ds (4)

details can be found in [18]. For each azimuthal medethe
integral equations are reduced to a system of matrix equatianisere( is the free-space Green’s function. The duality can be
in the form used to obtain the magnetic-field expressions. The cylindrical
near electric-field component expressions due to the surface cur-
[T][Cm] = [ V] m=0,+1,+£2,... (3) rentcomponents are given in the Appendix.
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TABLE |
TE;1:-MODE RESONANT FREQUENCY AND () FACTOR FOR ACAVITY FILLED WITH OIL

Case g €, | tand | computed, measured or | computed | measured or
(S/m) f,(GHz) | exact, f, (GHz) Q, exact, Q,
Gl(exact) | 1.57E7 | 1.0 | 0.0 15.054 15.051 4556 4572
G2 6.17E7 | 1.0 | 00 14.957 14.820 8462 9803+123
G3 1.57E7 | 1.0 | 0.0 14.730 14.681 4408 N/A
Gl(exact) | 1.57E7 | 2.2 | 0.001 10.156 10.150 782 789
G2 6.17E7 | 2.2 | 0.001 10.084 10.145 154 155.5
G3 1.57E7 | 2.2 | 0.001 9.935 9.971 783 790£17
TABLE I
RESONANT FREQUENCY AND ¢} FACTOR OF ISOLATED DR
mode f (computed)GHz | f (measured) GHz Q(computed) Q(measured)
TEys 4.854 4.85(21],4.85[5] 40.9 46.4 [21], 51 [5]
HEM, 5 6.334 6.33 [21], N/A [5] 319 30.3 [21], N/A [S]
HEM, 5 6.654 6.612 [21], 6.64 [5] 51.5 43.3 [21], 64 [5]
TM,5 7.536 7.494 [21], 7.60[5] 772 58.1[21], 86 [5]

To search for the resonant natural frequencies (frequencies
for which the system can have a response with no excitation),
replacejw by the complex frequency, wherej = / (—1) and
w is the radial frequency [12]. These frequencies can be deter-
mined by searching for the frequencies at which the determinant

of the matrix[T,,,] is zero. For a lossless system (no losses are
considered for the materials), the roots of

+“—g—»

det [T,,] =0 (5)

. Fig. 5. Cylindrical DR between parallel plates.
could be real or complex. If the structure is not enclosed by Ey y P P

conducting cavity, the system will have some radiation losses

and the resonant frequency is complex. The resonant frequek§jnd the numerical method, one can obtain the percentage of
is expressed as electromagnetic stored energy in each region. In some appli-

cations, certain modes can be excited without a change in the
Sm,v = —Om,v T JWm, v (6) resonant frequency by partitioning the cavity by a conducting

o ) ) corner with the apex passing by the axis of symmetry, as shown

The radiation® factor for resonators in the free space is comp, Fig. 3. The image theory is then used and the stored energy
puted as is computed for the cavity part, which is proportional with the
0 _ Wmu % volume of the partitioned part to the full symmetric cavity. The
v ’ dielectric power loss is proportional to the volume, but the con-

. ) i uction losses will consist of two parts. The first part is propor-
For closed cavities, lossless materials are considered and
8

cause the cavity is not radiating, the resonant frequency is rg ducting materials added to form the corner. This means that
andoy, ., = 0.‘ To comp ”t‘? th? ot factor at_th_e resonan_t fre- the total stored energy is reduced and the power losses are in-
quency, the field distribution is computed within the cavity angreased, which will result in a reduction of thefactor. The di-

the perturbation method is used to compute the stored eneigy . factor of each dielectric region can also be computed.
and the dielectric and conduction power losses in terms of the

known loss tangent4n ¢) and surface conductivity of the con-
stituent materials. The dielectrig factor (4) and conducting _ o _ _
Q factor (Q.) are related to the total unloadéifactor (@,,) as A. Conducting Cavity Filled With Oil

follows: Circular cylindrical resonant cavities are used for precision
1 1 1 measurement of complex permittivity of liquids [20]. The cavity

Q. - Q. + Q4 (8) dimensions ¢ = 12.7 mm, ~ = 25.4 mm) are chosen to res-

1al with the volume ratio and the other part is due to the new

Ill. RESULTS
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TABLE Il
RESONANT FREQUENCY AND ( FACTOR OF THECYLINDRICAL DR IN FIG. 5
TEy, f, GHz Q-factor
Computed (open) 2.934 3972.5
Computed (closed) 2.937 4113
Computed (closed) [19] 2.937 4415
Measured open [19] 2.937 4200
onate around 10 GHz with the liquid of permittivity 2.2 in pres- A

ence. The liquid is pressured through a narrow pipe to fill the !
cavity and flow out from a narrow pipe from the other side of ?
the cavity, as shown in Fig. 4. The pipe diamefet 12.7 mm

and lengthZ,, = 10 mm. To reduce the vertex of the liquid in
the cavity at the pipe entrance, a tapering wjth= 45° is in-
troduced. This tapering increased the cavity volume and caused
a reduction of the resonant frequency. The numerical model of .
the narrow pipe is checked with a short-circuit and an open-cir- i Coaling g
cuit termination at each end. As the cavity resonant frequency Tz 2
is much lower than the cutoff frequency of the narrow pipes, the i

resona.nt frequency gm@lfactor are not sensitive to the C'penmq:ig. 6. Geometry of a DR disc in a conducting cavity (all dimensions in
or closing of these pipes. The resonant frequency@ractor, mjlimeters).

computed and compared with some measured results, are shown

in.TabIe I: The resonant frequency g@ifactor .Of the cylin—. onant frequency an@ factor for the nonradiatingEq;,; mode
drical cavity are computed exactly using analytical expressionging two parallel plates and a closed cavity, as in [19], with ra-
as shown in Table I. Excellent agreement is obtained. For gfysj, = 104. The results are shown in Table IIl. The difference

air-filled cavity, the comparison between the measupdector petween resonant frequencies (0.85%) based on infinite plates
and computed? factor has a larger error because of the uncegy finite plates of radiusa is not clear.

tainty in the value of the conductivity. When the cavity is filled

with liquid, the dielectria factor (Q4) is much lower than that D. Simple Shielded DR
of the conductor®..). Therefore(?,; dominates the value of the
unloaded @,,). The computed and measuréq, are in much
better agreement with each other.

silver

Z
é
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
é
Z

The code has been verified for the cylindrical conducting
cavities filled with homogeneous dielectric material, as shown
above. The code is also suited for computation of the resonant
B. Isolated DR frequency and thé&) factor of a DR fully enclosed by a con-

' ducting cavity. The geometry of such a structure is shown in

For a dielectric cylinder disc in the free space with a raig. 6. The dielectric disk witlz,; = 35, tané = 0.00002,
diusa = 5.25 mm, height= 4.6 mm, and dielectric constant; — 34.036 mm, andh = 38.1 mm, is centered in a conducting
e = 38, the resonant frequency and radiati@nfactor are cavity coated with silver paint with a radius of 52.07 mm and a
given in Table Il for different modes. The computed values afgight of 79.375 mm. The computed resonant frequencyand
in excellent agreement with the computed values using otlfgttor for different modes are as shown in Table IV. Also shown
methods in [12] and [21]. Very good agreement between comre the filling factors, namely, the ratios between the stored en-
puted and measured frequencies is also obtained. However,éhg, in a certain region and the total stored electric energy in the
@ factor shows a large difference between computed and meavity [5, p. 332].
sured values. One can even see differences between the values
obtained experimentally in [5] and [21]. One can conclude th&t Circular Sectoral Cavities

the measurements of the sm@llfactor are less reliable than  The present numerical procedure for analyzing the bodies of
those with highe) factors, particularly when the 3-dB methodeg|ytion can also be applied to the cavities that occupy only a
is used. sector of the full circle, such as shown in Fig. 3. If the cavity

L is split through its axis of symmetry in two equal halves by
C. Cylindrical DR Between Parallel Plates a conducting plate (with a corner angle of 2g0the TEq1s5,

This constitutes a partially open resonating structure, alsdM;s, andHEM 55 modes will have the same resonant fre-
known as a Courtney holder. A cylindrical DR is located beguency without any disturbance of the field distribution or the
tween two silver-coated parallel conducting plates, as showasonant frequency. However, thefactor will be reduced due
in Fig. 5, withe,.; = 37.5, tané = 0.0001, the radius of the to the added conducting losses from the plate. Théactor
DR isa = 12.13 mm, b = 10qa, and the height of the DR is for the TEq;s mode in Table IV is reduced to 18 957, for the
h = 11.15 mm. The present method is used to compute the rddEM;;5s mode, it is reduced to 15897, and for tH&M ;s
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TABLE IV
RESONANT FREQUENCY AND () FACTOR OF THE SHIELDED RESONATOR INFIG. 6
Mode f, (MHZ) Q-factor DR filling factor Cavity filling factor
TEqs 816.0458 30354 0.992 0.008
HEM, 5 941.216 34148 0.979 0.021
HEM, , 1008.668 43295 0.83 0.17
TM, 5 1066.837 42314 0.84 0.16
AZ TABLE VI
COMPUTED AND MEASURED RESONANT FREQUENCY
Q) AND UNLOADED () FACTOR OF THECAVITY IN FIG. 7
cavity
Sample | Measure Q, Measured Computed Computed
h, a,e ac frequency | Q, frequency
a,, (MHz) (MHz)
%ﬂ
P 1 22572+ 098 |  866.289 22147.52 860.8744
2 22114 094 861.578 22051.56 865.5408
3 22028+ 152 865.578 21914.10 869.0690
| 4 22692+ 145 859.108 22540.23 860.5463
5 22508= 145 862.093 22428.90 865.2626
, . . , 6 22285+ 146 866.289 22274.46 868.9650
Fig. 7. Composite DR inside a cavity.
TABLE V ) )
PUCK AND SUPPORTDIMENSIONS IN THE CAVITY FROM FIG. 7 The measurement of tiigfactor is performed with a network
analyzer and the data were processed by the program Qzero
sample a,, (mm) a,, (mm) h, (mm) h, (mm) [22].
1 4.85 32,910 30.480 31.699
2 4.85 32.855 29.845 31.699 IV. CONCLUSIONS
3 4.864 32.880 29.210 31.699 Axisymmetric composite cavities are analyzed using the sur-
4 4.85 32,910 230,480 20,591 face integral equations and the MoM to compute the resonant
frequency and unloadég factor. Very good agreement between
5 4.85 32.855 29.845 29.591 the computed and measured results is obtained. The resonant
6 4.864 32.880 29.210 29.591 frequency is predicted within 0.5% error and théactor is pre-

dicted with less than 2% for the closed cavities, unless the cavity

mode, it is reduced to 1446. If the conducting plate becomed§SeS areé not accurate. TRefactor of open resonators shows
corner with an angle less than F8@nly the TE;s mode can larger errors compared to measured data becausg thetor is
be supported and the other three modes in Table IV will be s &nd the available measured data are not accurate enough.

pressed. For a 9Ccorner of conducting materials (one-quartef € Present method is flexible in analyzing a wide range of

of the full cavity), the factor of theTE,;s mode is reduced structures. We have also shown that it is easy to implem_ent
further to 12 490. this method in MoM codes that were developed for scattering

problems.
F. Composite Microwave Cavity

A cavity with multiple dielectric materials is shown in Fig. 7.
Several samples are considered with the dimensions and param-
eters given in Table V. The cavity is silver plated with =
50.8 mm, h. = 76.2 mm, and the support bored of depth= The cylindrical near electric-field components are given as
0.4572 mm. The cavity encloses a tubular DR (puck) and a sup-
porting disk. The puck has a dielectric constajy ~ 36 at E, (me)
900 MHz,tan 6, = 0.0002 at 900 MHz,a;, = 4.8514 mm,

APPENDIX
NEAR-FIELD EQUATIONS IN THE CYLINDRICAL
COORDINATE SYSTEM

an. Jt
aop = 32.9057 mm, andh, = 30.48 mm. The support has = I {Jrk/ dt(pi fi(t)) sinv; G2
e,s = 3.15 at 1 MHz, tan 6, = 0.0013 at 1 MHz, a,, = 4 t
38.1 mm, h, = 31.7 mm, and groove in the support of depth _ 1/ dtg (p‘f‘(t))(pGll — piG2)
ds = 6.27mm. The computed and measured resonant frequency k J,, ot o '

and@ factors for theT'Ey;s mode are given in Table VI. (A1)
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Eqb (]rtnz)
= J77sz |: / dt (pzfz( )) sin 1 G'3
vl / (i1 pZG:s’} (A2)
Ez (thnz)
_ _J77 mz |: /d pzfZ COSL/iGl
- ] g eso) —)61]
(A3)
E, (75,)
— 47‘:"” {—jk/t. dt(pi fi(1)) G3
_ /167;; /t dt(pi fi(1)) (pG1’ — piGzl)}
(A4)

Eo (V)

_ing®
- —JZ;"” |:+/€ / dt(pi fi(1)) G2

t;
m

kp;

[ dt(ﬁ(t))piazs'} (A5)

£ ()

o + B, (ML) + B, (M5,)] (A19)
— _”7 _ S ma |: 77’71/ dt( /
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_ Mt
P — me . . . / — . / B . . . . .
= T /t dt (pi fi()) [cosvi [pG1 — p,G2] The magnetic-field expression can be obtained using a duality
26| () eOrem, Fom e el coranates sompanens it
E. (M},) y p .
_M?t.
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