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Resonant Frequency andQ Factor of Axisymmetric
Composite Microwave Cavities
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Abstract—Resonant frequency and unloaded factor of
composite microwave cavities are computed using surface integral
equations for axisymmetric objects. The equivalence principle
is used to formulate the problem so that the unbounded space
Green’s function can be utilized. The numerical results are
verified experimentally for many samples of conducting cavities
and dielectric resonators inside conducting cavities. Also, cases
with a sector of the rotational cavity are considered by introducing
a conducting corner. The method allows the computation of the
stored energy in each dielectric region and the unloaded factor.

Index Terms—Cavity resonators, dielectric resonators, integral
equations, factors, resonant frequencies.

I. INTRODUCTION

CERAMIC materials of high dielectric constant and low
loss can exhibit a very high- factor. Therefore, they have

been widely used as resonators in microwave filters and os-
cillators. To understand the behavior of these elements and to
determine the best coupling mechanism, it is necessary to de-
termine the electromagnetic-field distribution inside the cavity.
The resonant frequency andfactor have to be computed ac-
curately before the electromagnetic fields in the vicinity of the
resonators can be obtained. It is, therefore, important to be able
to determine the resonant frequencies andfactors of the de-
sired modes.

Many different approaches to the analysis of dielectric
resonators (DRs) have been described in the literature [1]–[22].
Some of these methods are based on simplifications of the
geometry, such as the perfect magnetic conducting (PMC) walls
method [1]–[3]. Dielectric waveguide methods [4], as well as
their perturbation corrections and the variation improvements
[5], for cylindrical resonators have also been developed. In
1975, Van Bladel reported a rigorous asymptotic method for
evaluating the modes of DRs of arbitrary shape and high per-
mittivity [6], [7]. In addition, radial and axial mode-matching
methods [9] for shielded resonators, as well as asymptotic
expansion methods [10] have been reported. Also, general
mode-matching approaches using Green’s dyadic functions or
transverse modes in expanding the interior and exterior fields
[11] have been successful approaches for this kind of problem.
Glissonet al. [12], Kajfez et al. [13], and Kishket al. [14]
introduced the use of the method of moments (MoM) for the
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Fig. 1. Example of the original cavity.

analysis of an open DR. The method was applied to dielectric
bodies of revolution of arbitrary cross section and is useful for
any azimuthal variation. Their results indicate that their method
has yielded highly accurate values of resonant frequencies and

factors for homogeneous DRs. Also, the finite integration
method was used for axisymmetric shielded resonators [15].
Another recently reported approach to the electromagnetic
resonance of open DRs is the null-field method [16], [17]
developed by Zheng and Strom. In that approach, the resonance
problem is solved by searching for zeros of the determinant of
the so-called -matrix for the DRs.

A previously developed numerical method [18] based on the
MoM is used here to search for the complex resonant frequency,
from which the resonant frequency and radiationfactor can
be computed, of both homogeneous and inhomogeneous DRs
in free space. The geometries considered here are rotationally
symmetric so the body of revolution approach is employed. The
equivalence principle is used and the surface integral equations
are formulated for the problem. The MoM is then used to reduce
the integral equations to a matrix equation. The natural resonant
frequencies are defined as the frequencies at which the determi-
nant of the moment matrix vanishes. Also, since the rotationally
symmetric structure supports independent azimuthal modes, the
azimuthal variation of the unknown equivalent currents is ex-
panded in Fourier series. This allows one to search for the zeros
of the moment matrix for modes having a particular azimuthal
variation.

To compute the factor of nonradiating cavities, we con-
sider a lossless structure and search for the resonant frequencies.
Once the resonant frequency is known, the surface currents are
computed, which are then used to compute field distributions
inside the cavity. The perturbation method is then employed to
compute the stored energy and dissipated power from which we
compute the factor.
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Fig. 2. Equivalent problems.

II. EQUIVALENCE PRINCIPLE

The problem is formulated based on the surface equivalence
principle [18]. To illustrate the procedure, an example of a DR
in a cavity is considered, as shown in Fig. 1, as the original
problem, which consists of two dielectric disks (the puck and
support) inside a conducting cavity. This problem consists of
three regions, namely: 1) the puck region; 2) the support re-
gion; and 3) the free-space cavity volume. To formulate the
problem using the surface equivalence principle, three equiv-
alent problems are needed. These equivalent problems are pre-
sented graphically, as shown in Fig. 2. In summary, each region
has an unbounded equivalent problem filled with materials of
the same type as the original material of the region with nonzero
fields and zero field outside of the particular region. The surface
surrounding the region carries equivalent electric and magnetic
currents to compensate for the discontinuity in the assumed field
distribution. The equivalent currents on the dielectric surfaces
of each equivalent problem must satisfy the continuity of the
tangential fields. Notice that we only consider the interior con-
ducting surface of the cavity.

Surface integral equations are obtained from the boundary
conditions on all boundaries in terms of unknown surface cur-
rents. The equivalent surface currents for body of revolution can
be expressed as

(1)

(2)

where and are the equivalent electric and magnetic
currents, respectively. Surface coordinatesand are in-
troduced on the surface, whereis the arc length along the
generating curve and is the azimuthal angle measured from
the – -plane. Also, and are the unit vectors tangential
to the body surface in the directionand . is the triangle
basis function and is the index of the azimuthal mode. More
details can be found in [18]. For each azimuthal mode, the
integral equations are reduced to a system of matrix equations
in the form

(3)

(a) (b)

Fig. 3. Geometries of the sectorial cavity. (a) Circular sectorial cavity with
angle�. (b) Circular sectorial cavity with� = 180 .

Fig. 4. Cross sections of different configurations of conducting cavities.

where is a square matrix, is a column vector for the
unknown coefficients, and is the excitation vector. The so-
lution of (3) provides the unknown current coefficients on all
the object boundaries. In general, the current coefficients can
be used to compute the fields as

(4)

where is the free-space Green’s function. The duality can be
used to obtain the magnetic-field expressions. The cylindrical
near electric-field component expressions due to the surface cur-
rent components are given in the Appendix.
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TABLE I
TE -MODE RESONANT FREQUENCY ANDQ FACTOR FOR ACAVITY FILLED WITH OIL

TABLE II
RESONANT FREQUENCY ANDQ FACTOR OFISOLATED DR

To search for the resonant natural frequencies (frequencies
for which the system can have a response with no excitation),
replace by the complex frequency, where ( 1) and

is the radial frequency [12]. These frequencies can be deter-
mined by searching for the frequencies at which the determinant
of the matrix is zero. For a lossless system (no losses are
considered for the materials), the roots of

(5)

could be real or complex. If the structure is not enclosed by a
conducting cavity, the system will have some radiation losses
and the resonant frequency is complex. The resonant frequency
is expressed as

(6)

The radiation factor for resonators in the free space is com-
puted as

(7)

For closed cavities, lossless materials are considered and be-
cause the cavity is not radiating, the resonant frequency is real
and . To compute the total factor at the resonant fre-
quency, the field distribution is computed within the cavity and
the perturbation method is used to compute the stored energy
and the dielectric and conduction power losses in terms of the
known loss tangent ( ) and surface conductivity of the con-
stituent materials. The dielectric factor ( ) and conducting

factor ( ) are related to the total unloadedfactor ( ) as
follows:

(8)

Fig. 5. Cylindrical DR between parallel plates.

Using the numerical method, one can obtain the percentage of
electromagnetic stored energy in each region. In some appli-
cations, certain modes can be excited without a change in the
resonant frequency by partitioning the cavity by a conducting
corner with the apex passing by the axis of symmetry, as shown
in Fig. 3. The image theory is then used and the stored energy
is computed for the cavity part, which is proportional with the
volume of the partitioned part to the full symmetric cavity. The
dielectric power loss is proportional to the volume, but the con-
duction losses will consist of two parts. The first part is propor-
tional with the volume ratio and the other part is due to the new
conducting materials added to form the corner. This means that
the total stored energy is reduced and the power losses are in-
creased, which will result in a reduction of thefactor. The di-
electric factor of each dielectric region can also be computed.

III. RESULTS

A. Conducting Cavity Filled With Oil

Circular cylindrical resonant cavities are used for precision
measurement of complex permittivity of liquids [20]. The cavity
dimensions ( mm, mm) are chosen to res-
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TABLE III
RESONANT FREQUENCY ANDQ FACTOR OF THECYLINDRICAL DR IN FIG. 5

onate around 10 GHz with the liquid of permittivity 2.2 in pres-
ence. The liquid is pressured through a narrow pipe to fill the
cavity and flow out from a narrow pipe from the other side of
the cavity, as shown in Fig. 4. The pipe diameter mm
and length mm. To reduce the vertex of the liquid in
the cavity at the pipe entrance, a tapering with is in-
troduced. This tapering increased the cavity volume and caused
a reduction of the resonant frequency. The numerical model of
the narrow pipe is checked with a short-circuit and an open-cir-
cuit termination at each end. As the cavity resonant frequency
is much lower than the cutoff frequency of the narrow pipes, the
resonant frequency andfactor are not sensitive to the opening
or closing of these pipes. The resonant frequency andfactor,
computed and compared with some measured results, are shown
in Table I. The resonant frequency andfactor of the cylin-
drical cavity are computed exactly using analytical expressions,
as shown in Table I. Excellent agreement is obtained. For an
air-filled cavity, the comparison between the measuredfactor
and computed factor has a larger error because of the uncer-
tainty in the value of the conductivity. When the cavity is filled
with liquid, the dielectric factor ( ) is much lower than that
of the conductor ( ). Therefore, dominates the value of the
unloaded ( ). The computed and measured are in much
better agreement with each other.

B. Isolated DR

For a dielectric cylinder disc in the free space with a ra-
dius mm, height mm, and dielectric constant

, the resonant frequency and radiationfactor are
given in Table II for different modes. The computed values are
in excellent agreement with the computed values using other
methods in [12] and [21]. Very good agreement between com-
puted and measured frequencies is also obtained. However, the

factor shows a large difference between computed and mea-
sured values. One can even see differences between the values
obtained experimentally in [5] and [21]. One can conclude that
the measurements of the small factor are less reliable than
those with high- factors, particularly when the 3-dB method
is used.

C. Cylindrical DR Between Parallel Plates

This constitutes a partially open resonating structure, also
known as a Courtney holder. A cylindrical DR is located be-
tween two silver-coated parallel conducting plates, as shown
in Fig. 5, with , , the radius of the
DR is mm, , and the height of the DR is

mm. The present method is used to compute the res-

Fig. 6. Geometry of a DR disc in a conducting cavity (all dimensions in
millimeters).

onant frequency and factor for the nonradiating mode
using two parallel plates and a closed cavity, as in [19], with ra-
dius . The results are shown in Table III. The difference
between resonant frequencies (0.85%) based on infinite plates
and finite plates of radius is not clear.

D. Simple Shielded DR

The code has been verified for the cylindrical conducting
cavities filled with homogeneous dielectric material, as shown
above. The code is also suited for computation of the resonant
frequency and the factor of a DR fully enclosed by a con-
ducting cavity. The geometry of such a structure is shown in
Fig. 6. The dielectric disk with , ,

mm, and mm, is centered in a conducting
cavity coated with silver paint with a radius of 52.07 mm and a
height of 79.375 mm. The computed resonant frequency and
factor for different modes are as shown in Table IV. Also shown
are the filling factors, namely, the ratios between the stored en-
ergy in a certain region and the total stored electric energy in the
cavity [5, p. 332].

E. Circular Sectoral Cavities

The present numerical procedure for analyzing the bodies of
revolution can also be applied to the cavities that occupy only a
sector of the full circle, such as shown in Fig. 3. If the cavity
is split through its axis of symmetry in two equal halves by
a conducting plate (with a corner angle of 180), the ,

, and modes will have the same resonant fre-
quency without any disturbance of the field distribution or the
resonant frequency. However, thefactor will be reduced due
to the added conducting losses from the plate. Thefactor
for the mode in Table IV is reduced to 18 957, for the

mode, it is reduced to 15 897, and for the
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TABLE IV
RESONANT FREQUENCY ANDQ FACTOR OF THESHIELDED RESONATOR INFIG. 6

Fig. 7. Composite DR inside a cavity.

TABLE V
PUCK AND SUPPORTDIMENSIONS IN THE CAVITY FROM FIG. 7

mode, it is reduced to 1446. If the conducting plate becomes a
corner with an angle less than 180, only the mode can
be supported and the other three modes in Table IV will be sup-
pressed. For a 90corner of conducting materials (one-quarter
of the full cavity), the factor of the mode is reduced
further to 12 490.

F. Composite Microwave Cavity

A cavity with multiple dielectric materials is shown in Fig. 7.
Several samples are considered with the dimensions and param-
eters given in Table V. The cavity is silver plated with

mm, mm, and the support bored of depth
mm. The cavity encloses a tubular DR (puck) and a sup-

porting disk. The puck has a dielectric constant at
900 MHz, at 900 MHz, mm,

mm, and mm. The support has
at 1 MHz, at 1 MHz,

mm, mm, and groove in the support of depth
mm. The computed and measured resonant frequency

and factors for the mode are given in Table VI.

TABLE VI
COMPUTED AND MEASURED RESONANT FREQUENCY

AND UNLOADED Q FACTOR OF THECAVITY IN FIG. 7

The measurement of thefactor is performed with a network
analyzer and the data were processed by the program Qzero
[22].

IV. CONCLUSIONS

Axisymmetric composite cavities are analyzed using the sur-
face integral equations and the MoM to compute the resonant
frequency and unloadedfactor. Very good agreement between
the computed and measured results is obtained. The resonant
frequency is predicted within 0.5% error and thefactor is pre-
dicted with less than 2% for the closed cavities, unless the cavity
losses are not accurate. Thefactor of open resonators shows
larger errors compared to measured data because thefactor is
low and the available measured data are not accurate enough.
The present method is flexible in analyzing a wide range of
structures. We have also shown that it is easy to implement
this method in MoM codes that were developed for scattering
problems.

APPENDIX

NEAR-FIELD EQUATIONS IN THE CYLINDRICAL

COORDINATE SYSTEM

The cylindrical near electric-field components are given as

(A1)
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(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

where

(A13)

The integrals in (A13) have no closed form and, consequently,
are obtained numerically.

The electric-field expressions can now be presented as

(A14)

(A15)

(A16)

The magnetic-field expression can be obtained using a duality
theorem. From the cylindrical coordinates components, it is
easy to obtain the Cartesian field components.
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